

Robust Design of a Cohn Filter Circuit

Pham Slide 1 OptiY GmbH - Germany

Cohn Filter Circuit

Output Voltage through Circuit Simulation

www.optiy.eu

Filter Design Specifications

Pham Slide 4 **Initial Nominal Design**

Process Work Flow

www.optiy.eu

Nominal Design Optimization

Nominal Optimization Process

Final Nominal Design

www.optiy.eu

Robustness Evaluation of Nominal Design

Nesign Parameters				
Name	Nominal	Tolerance	Unit	
x	0.586	0.01		
R	38.93	1		
L	2.113	0.01	u	
Lm	0.468	0.01	u	
C11	28.03	1	р	
C12	24.64	1	р	
C2	237.2	1	р	
C3	42.37	1	р	

Uncertainties or Tolerances for Design Parameters of the Nominal Design

Design of Experiment (DOE) 100 Model-Calculations

Stochastic Distribution of Design Parameters

Pham Slide 8

By 100.000 Samples

Probabilistic Simulation of Nominal Design

www.optiy.eu

Pham Slide 9

Total Failure Probability = 82.1%

Sensitivity of Nominal Design

0D Sensitivity at 18 MHz

Pham Slide 10 1D Frequency Sensitivity

Robust Design Optimization

Design Parameters for Final Robust Design

🔁 Design Parameters 🛛 🗖 🖾				
Name	Nominal	Tolerance	Unit	
x	0.604	0.01		
R	41.09	1		
L	2.113	0.01	u	
Lm	0.5058	0.01	u	
C11	27.13	1	р	
C12	24.64	1	р	
C2	203.6	1	р	
C3	42.1	1	р	

Optimization Process to Minimize the Failure Probability

Evaluation of Robust Design

Pham Slide 12

Total Failure Probability = 16.5%

Conclusion

Nominal design using classical nominal simulation cannot warranty the reliability and quality of the products, because the nominal parameters are only one fix value.

Robust design is a power-full tool for design of reliable and quality product in the early design stage without any cost. It considers the uncertainty parameters as stochastic distributions.

In the case of the Cohn filter circuit, the failure probability has been reduced from **82,1% to 16,5%** for the mass manufacturing.

OptiY® is the leading software platform for robust design of all engineering fields using different commercial CAD/CAE-software or in-house codes.