

# **Robust Design of a Hydraulic Cylinder Drive**



OptiY GmbH - Germany



# Dynamical Simulation of the Controlled Cylinder Drive



Network Model in SimulationX







#### Design Specifications = Constraints



Valve Pressure P P < 87 bar in range [0.1; 2.0] s

**Piston Velocity v** v < 0.282 m/s in range [0.1; 0.52] s v >-0.003 m/s in range [0.6; 0.90] s



#### **Process Work Flow**



Pham Slide 4



### PID-Control Parameter Identification through Optimization



Piston Displacement before Optimization 

 Parameters

 Gain
 GP:
 19.995
 ▼

 Derivative Time
 TdD:
 0.015801
 s
 ▼

 Damping Ratio
 Til:
 0.97974
 s
 ▼

Piston Displacement after Optimization



# Robustness Evaluation of Nominal Design

| 🔁 Design Parameters |      |        |                                       |
|---------------------|------|--------|---------------------------------------|
| Name                | Nom  | Tolera | Unit                                  |
| Mass                | 100  | 4      | kg                                    |
| Pressure            | 100  | 4      | bar                                   |
| Piston Diameter     | 50   | 1      | mm                                    |
| Stop Stiffness      | 50   | 4      | kN/mm                                 |
| Dead Volume Port A  | 50   | 4      | cm³                                   |
| Dead Volume Port B  | 50   | 4      | cm³                                   |
| Rod Diameter        | 36   | 1      | mm                                    |
| Natural Frequency   | 10   | 5      | Hz                                    |
| Kinematic Viscosity | 41   | 2      | mm²/s                                 |
| Density             | 0.89 | 0.01   | g/cm³                                 |
| Pressure Drop       | 35   | 4      | bar                                   |
| 1                   |      |        | · · · · · · · · · · · · · · · · · · · |

Parameter and Process Uncertainties for Nominal Design

> Design of Experiment 100 Model Calculations







#### Residual Plot for 1D-Meta-Models



1.08

1.59

-1.71e-013

Time [s]

2.1

Pham Slide 7

0.06

0.57



#### **Design and Process Uncertainties**



Pham Slide 8

#### 100.000 Samples



#### Probabilistic Simulation of Nominal Design



Pham Slide 9

#### Failure Probability = 23.71%



#### Sensitivity Analysis of Nominal Design



0.2 %

0 %

Total Effect

Main Effect

www.optiy.eu

Dead Volume Port A 0.35 %

Pham Slide 10

0.06

0.57

1.08

1.59

2.1

Time [s]

.89e-006



### Meta Models of the Cylinder Drive







www.optiy.eu



### **Robust Design Optimization**

| Calculator<br>mean(Valve Pressure)+mean(                                      | (Piston Velocity)                                                                                                                                                                                                                                                                               |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Valve Pressure<br>Piston Velocity<br>Gain<br>Derivative Time<br>Damping Ratio | sin     asin     Back     Delete All       cos     acos     (     )       tan     atan     7     8     9     /       abs     exp     4     5     6     ×       In     pow     1     2     3     -       sqt     sqr     0     .     +       Statistics     Mean     Sigma     Variance     Cost |  |  |  |  |
| Test OK Cancel                                                                |                                                                                                                                                                                                                                                                                                 |  |  |  |  |

| Design Parameters   |            | 1         |                 |                             |
|---------------------|------------|-----------|-----------------|-----------------------------|
| Name                | Nominal    | Tolerance | Unit            | Comment                     |
| Mass                | 100        | 4         | kg              | Mass                        |
| Pressure            | 100        | 4         | bar             | Pressure                    |
| Piston Diameter     | 51.6624885 | 1         | mm              | Piston Diameter             |
| Stop Stiffness      | 50.1882929 | 4         | kN/mm           | Stiffness                   |
| Dead Volume Port A  | 50.5552772 | 4         | cm³             | Dead Volume Port A          |
| Dead Volume Port B  | 50.817121  | 4         | cm <sup>3</sup> | Dead Volume Port B          |
| Rod Diameter        | 34.0077134 | 1         | mm              | Rod Diameter                |
| Natural Frequency   | 9.91139109 | 5         | Hz              | Natural Frequency (Undamp   |
| Kinematic Viscosity | 41         | 2         | mm²/s           | Kinematic Viscosity         |
| Density             | 0.89       | 0.01      | g/cm³           | Density                     |
| Pressure Drop       | 35         | 4         | bar             | Pressure Drop at Valve Edge |

Design and Process Parameters of the Robust Design

Design Objective for the Virtual Robust Optimization Process



#### **Robust Design Probability**



Pham Slide 13

#### Failure Probability = 1.08%



### Robust Design Sensitivity



www.optiy.eu



## Conclusion

Nominal design using classical nominal simulation cannot warranty the reliability and quality of the products, because the nominal parameters are only one fix value.

Robust design is a power-full tool for design of reliable and quality product in the early design stage without any cost. It considers parameter uncertainties as stochastic distributions.

In the case of the hydraulic cylinder drive, the failure probability has been reduced from 23.71% to 1.08% for the manufacturing process.

**OptiY**® is the leading software platform for robust design of all engineering fields using different commercial CAD/CAE-software or in-house codes.