

Novel Technology Case Study

Data-Driven Modeling and Simulation of a double Spring Mass Damper System

www.optiy.eu

Imperfect Data and Physics of the System

System-Modeling using Mix: Data + Physics

Ξ	Hilbert Space		
	Include X-Axis		
	Include 1D-Variables		
	X-Nonlinearity	None	
	Uniform Space		
	t		
	Covariance Function	Exponential	
	Number of Features	20	
	Gaussian Noise [%]	0.01	
	Approximation Error [%]	0	
	Regularization Weight	1	
	Include DOE	v	
	Weight	1	
	Partial Differential Equatio		
	Boundary Conditions		
	Constraints		
	Parameters		

Only Data for Mass 1

Hilbert Space		
Include X-Axis		
Include 1D-Variables		
X-Nonlinearity	None	
Uniform Space		
🗖 t		
Covariance Function	Exponential	
Number of Features	15	
Gaussian Noise [%]	0.01	
Approximation Error [%]	0	
Regularization Weight	1 Differential Equation for Mass 2	
Include DOE		
Partial Differential Equation		
PDE	m2/k2*derivate(xt2,t,t)+c2/k2*derivate(xt2,t)-c2/k2*derivate(xt1,t)+xt2-xt1=0	
Linear		
Sampling Level	5	
Weight	1	
Boundary Conditions		
Number of Boundaries	2	
Boundary 1		
Initial Value	xt2=0.055	
Number of fixed Values	1	
Fixed Parameter	t	
Sampling Level	5 Initial Conditions for Mass 2	
Weight [01]	1	
El Boundary 2		
Initial Value	derivate(xt2,t)=0	
Number of fixed Values	1	
Fixed Parameter	t	
Sampling Level	5	
Weight [01]	1	
Constraints		
Parameters		

Real-Time Simulation and Measurement

Summary

- For the modeling system, there are sometime in the reality only imperfect data from measurement and imperfect physics in form of partial differential equation, initial condition or constraints. The goal is modeling and simulation of the total system behavoirs
- Physics-informed machine learning (PIML) is the best technology to solve this problem. Based on the Hilbert space, the meta-model can be modeled from both data and physics representing the system response.
- For the double spring mass damper system, there are only measurement data for the position of mass 1 and partial differential equation and initial conditions for mass 2. From these imperfect data and physics, the system response can be modeled and simulated in real-time. The simulation and measurement of the system response coincides totally.